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Talking about engineering and theory challenges for malware to come

Prediction is very hard, especially about the future
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Overview

Results of author’s structural MW analysis 
Propose moving towards iterative games 
and black-box process modeling, as 
expressed by interactive computing models

Classic AV pattern matching identification 
may have reached its practical and 
theoretical limits with present modern MW 

MW to come? k-ary, Satan, IC and Quantum 
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Metamorphism/Polymorphism

Metamorphic 
malware generally do 
not use encryption, but 
mutate body in 
subsequent generations

Polymorphic 
malware contain 
decryption routines 
which decrypt 
encrypted constant 
parts of body

Confusing: Sometimes, polymorphism subsumes 
both terms, especially in ‘older’ work
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Metamorphic Detection

In Feb 2007, 17 state-of-the-
art AV scanners checked 
against 12 well-known, 
previously submitted, highly 
polymorphic and 
metamorphic malware 
samples. 
Detection miss rates:  
100% to 0%,  ave of 38%.

Metamorphismmutate body 
in subsequent generations
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Today: Highly variable MW

Strategy: 
Server-side metamorphic
High, at times bursty, intensity release
Few instances (10s-100s) per variant

Bagle/Beagle: email-born worm, first appeared 
in 2004

Distinct variants since Jan 9 07: ~30,000 
Average distinct variants per day: 625

Not the only one: Feebs, Warezov ..

From Commtouch’s Bagle Report: http://commtouch.com/downloads/Bagle-

Worm_MOTR.pdf

The server-side polymorphic technique of writing and releasing large numbers of variants, 

each variant distributed via just a few email messages, is used by the malware writers to 

enable them to continue to defeat traditional AV solutions that are based on signatures or 

heuristic rules. These common anti-virus techniques depend on prior knowledge of malware 

to devise tools to block future outbreaks. Since server-side polymorphs like Bagle distribute 

each variant in a small number of emails and then switch to new variants, by the time 

traditional AV vendors can develop a signature or heuristic appropriate for one variant its 

lifecycle has ended and new variants are being propagated. Overwhelmed with a constant 

barrage of new variants, traditional AV solutions have difficulty keeping up”
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Bagle Metamorphic Strategy

Strategy:
Server-side 
metamorphic

High, bursty, 
intensity release

Few instances 
(10s-100s) per 
variant

Result: ‘RoQ’ attack on 
AV detection system!

From Commtouch’s Bagle Report:

The upper graph shows intensity, the  lower graph graph illustrates the average number of 

instances, or copies of the same code, per variant each day of the report period. 

The data lead to the following key conclusions:  Bagle-Worm writers deliberately and 

consistently circulate low-volume variants.  ‘Stealth’ outbreaks are engineered to stay below 

the radar of AV engines.  By distributing each malware variant in very low volumes (up to a 

few hundred instances), the malware effectively evades detection by many anti-virus 

solutions.

From an economic  and systemic point of view, this is very smart. A set of strategies to 

attack *the AV cost structure* is a variant of so-called Reduction-Of-Quality attacks on 

systems.  The result is that numerous malware variants never even reach the stage of being 

analyzed by the AV vendors to create a signature or heuristic. 
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‘Classic’ Metamorphic 
Techniques

Control Flow: Instruction reordering, branch 
conditions reversal, JMPs inserted randomly, 
subroutine permutations

Instruction: Garbage opcodes in unreachable 
code areas, opcode substitution with semantic 
equivalents (e.g. SUB EBX, EBX into XOR EBX, 
EBX), register swapping

Picture from Szor
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Advanced Metamorphic 
Techniques

To integrate itself, 
MW disassembles & 
rebuilds host
Non-trivial:Must 
iteratively recompute
relative addresses 
after insertions. 
[Requires 32MB RAM, explicit 
section names (DATA, CODE, 
etc.) in host binary]

Code Integration: Malware merges into benign 
host code. “Islands” of MW code positioned into 
random locations and linked by jumps. No 
guarantee MW entry point will be reached

T-1000 from “Terminator 2”

Examples: ZMist and Simile

See an overview of the Mistfall engine used in ZMist at http://vx.netlux.org/lib/vzo21.html

The whole procedure is non trivial

1) Addresses are based on offsets, which must be recomputed when new 

instructions are inserted

2) MW must perform complete instruction-by-instruction disassembly and re-

generation of the host binary. This is an iterative process: rebuild with new 

addresses, see if branch destinations changed, then rebuild again

3) Host binary requirements: 32MB of RAM and explicit section names (DATA, 

CODE, etc.) in the host binary, so it does not work with every host binary. 
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ZMist Code Integration Process

Pick a Portable
Executable binary
< 448Kb in size

Disassemble, insert space for new
code blocks, generate new binary

Mutate virus body
• Split into jump-linked “islands”
• Mutate opcodes (OR↔TEST)
• Swap register and PUSH/POP, etc.

Encrypt virus body by
with randomly 
generated key,
insert mutated decryptor

Insert random
garbage 
instructions

Decryptor must 
restore host’s 
registers to 
preserve host’s
functionality

Randomly insert
indirect call OR jump
to decryptor’s entry
point OR rely on
instruction flow to
Reach, then decrypt
MW step by step into
32 K writable section

Writable 32K data 
section to hold 
decrypted body

http://pferrie.tripod.com/papers/zmist.pdf

Picture adapted  from 
Shmatikov

From http://pferrie.tripod.com/papers/zmist.pdf

The polymorphic decryptor consists of .islands. of code that are integrated into random locations 
throughout the host code section and linked together by jumps. The decryptor integration is 
performed in the same way as for the virus body integration . existing instructions are moved to either 
side, and a block of code is placed in between

them. The polymorphic decryptor uses absolute references to the data section, but the Mistfall engine 
will update the relocation information for these references too.

An anti-heuristic trick is used for decrypting the virus code: instead of making the section writable in 
order to alter its code directly, the host is required to have, as one of the first three sections, a section 
containing writable, initialized data. The virtual size of this section is increased by 32 KB, large 
enough for the decrypted body and all the variables used during decryption. This allows the virus to 
decrypt code directly into the data section, and transfer control to there. If such a section cannot be 
found, then the virus will infect the file without using encryption. The decryptor will receive control 
in one of four ways: via an absolute indirect call (0xFF 0x15), a relative call (0xE8), a relative jump 
(0xE9), or as part of the instruction flow itself. If one of the first three methods is used, the transfer of 
control will usually appear soon after the entry point. In the case of the last method, though, an island 
of the decryptor is simply inserted into the middle of a subroutine, somewhere in the code (including 
before the entry point).

All used registers are preserved before decryption and restored afterwards, so the original code will 
behave as before. Zombie calls this last method .UEP., perhaps an acronym for Unknown Entry 
Point, because there is no direct pointer anywhere in the file to the decryptor.

When encryption is used, the code is encrypted with ADD/SUB/XOR with a random key, and this 
key is altered on each iteration by ADD/SUB/XOR with a second random key. In between the 
decryption instructions are various garbage instructions, using a random number of registers, and a 
random choice of loop instruction, all produced by the Executable Trash Generator engine (ETG), 
also written by Zombie. It is clear that randomness features very heavily in this MW.
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Approach: Structural Analysis

Goal: Identify (and classify) modern malware 
quicker 

Problem: Signature matching and checksums 
tend to be too rigid, heuristics and emulation may 
take too long a time 

Approach: Find classifiers (‘structural 
fingerprints’) that are statistical in nature, 
‘fuzzier’ metrics between static signatures and 
dynamic emulation and heuristics



Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 11

Meta Idea

Signatures are relatively 
exact and very fast, but show 
little tolerance for 
metamorphic, polymorphic 
code

Obfuscation toleranceA
n
a
ly
si
s 
ti
m
e 

Heuristics and 
emulation can be used to 
reverse engineer, but these 
methods are relatively slow 
and ad hoc (an art, really)

Statistical structural metrics may be a ‘sweet spot’, more 
robust towards metamorphic obfuscation techniques

Want analysis speed of signature with tolerance of obfuscation for heuristics/emulation

Most statistical metrics do not care about permutations. Trivial example is statistical 

averaging: ave(5,2,1) = ave (1,2,5) = 2.67-> idea is to find metrics that are more resilient to 

obfuscated code by tolerating of permutations etc
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Structural Perspectives

Primarily
static 

Graph
structural
properties

Explore inter- and 
intra-control flow of 
functions

Callgraph

Primarily
dynamic

API call vector Observe API calls
made

Win 32 API
call

Primarily
static

Opcode
frequency
distribution

Count different
instructions

Assembly
instruction

static /
dynamic?

Statistical
Fingerprint

DescriptionStructural
Perspective

Research 2005-2007: Tried several approaches 
for statistical structural discrimination

static = read malware binaries

dynamic = execute malware binaries
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1st Fingerprint: Win 32 API Calls 

Goal: Classify malware quickly into a family (set 
of variants make up a family)

Synopsis: Observe and record Win32 API calls 
made by malicious code during execution, then 
compare them to calls made by other malicious 
code to find similarities

Joint work with Chris Ries (honors student) 

Main result (2005) : Simple VSM model yields 
> 80% correct classification (after tuning)

Classification purposes

Chris Ries (2005, CS honor’s thesis, Colby College), now at VigilantMinds
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Win 32 API calls: Overview

Data 
Collection

Vector 
Builder

Vector Comparison

Database

Malicious Code FamilyLog File

Data Collection: Run malicious code, 
recording Win32 API calls it makes

Vector Builder: Build count vector from 
collected API call data and store in database

Comparison: Compare vector to all other 
vectors in the database to see if its related to any 
of them
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Win 32 API Call: Call Recording

Malicious process is started in suspended state
DLL is injected into process’s address space

When DLL’s DllMain() function is executed, it hooks
the Win32 API function

Calling 
Function

Target 
Function

Target 
Function

Calling 
Function

Hook Trampoline

Function call before hooking Function call after hooking

Hook records the call’s time and arguments, calls the 
target, records the return value, and then returns the 
target’s return value to the calling function. 

Slide from Chris Ries

The method that the DLL uses to hook the function was developed for Microsoft’s Detours 

Research project .

For trampoline, see Ivanov,  “API hooking revealed”, 

http://www.codeproject.com/system/hooksys.asp
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Win 32 API call: Call Vector

Column of the vector represents a hooked function and 
count (i.e number of times called)

1200+ different functions recorded during execution

For each malware specimen, vector values recorded to 
database

…01561262Number of 
Calls

…EndPath()CloseHandle()FindFirstFileA()FindClose()Function 
Name

Number of times a function is called can vary during execution. Run all malware in same 

environment to produce similar execution paths. Use comparison system that will try to 

account for this
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Win 32 API call: Comparison

Computes cosine similarity measure csm
between vector and each vector in the database

=
•

=
21

21
21 ),(

vv

vv
vvcsm vv

vv
vv

If csm(vector, most similar vector in the 
database) > threshold � vector is classified 
as member of familymost-similar-vector

Otherwise vector classified as member of 
familyno-variants-yet

v 1

v2

Maintains a database of all vectors that it has already processed. When a vector is inputted 

into the system, it is compared to every vector in the database in order to find the most 

similar one
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Results: Win 32 API Calls
Collected 77 malware samples

33Moega
58SDBot

66Welchia

11Pestlogg
er

01Spybot

12
Randex

23Sasser
88Netsky
55MyLife
810MyDoom

22Mitgleid
er

11Klez
02Inor
11Gibe
23Frethem
11Blaster
1415Beagle

4
1
2

4
1
2

Banker
Nibu
Tarno

01Apost

# 
correct

# of 
members

Family

2720480.620.99

1132610.790.95

1041610.790.9

842630.820.85

563630.820.8

465620.80.75

285620.80.7

miss. fam.bothfalse fam.���� #���� %Threshold

Classification made by 17 
major AV scanners 
produced 21 families 

(some aliases) 

~80 % correct with 

csm threshold 0.8

Discrepancies

Misclassifications
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2nd Fingerprint: 
Opcode Frequency Distribution
Synopsis: Statically disassemble the binary, 
tabulate the opcode frequencies and construct a 
statistical fingerprint with a subset of said 
opcodes.  

Goal: Compare opcode fingerprint across non-
malicious software and malware classes for 
quick identification (and later classification) 
purposes.

Main result (ICGeS, 2006): ‘Rare’ opcodes 
explain more data variation then common ones

Identification purposes
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Opcode Distribution

Procedure

1. Booted VMPlayer with XP 
image

2. Inventoried PEs from C. Ries
malware collection with 
Advanced Disk Catalog

3. Fixed 7 classes (e.g. virus,, 
rootkit, etc), chose random PEs
samples with MS Excel and 
Index your Files  

4. Ran IDA with modified 
InstructionCounter plugin on 
sample PEs

5. Augmented IDA output files 
with PEID results (compiler, 
packer) and ‘class’

6. Wrote Java parser for raw data 
files and fed JAMA’ed matrix 
into Excel for analysis

Giri.5209
Gobi.a
---------.b

size: 12288

totalopcodes: 615

compiler: unknown

class: virus

0001. 000112    18.21%      mov

0002. 000094    15.28%      push

0003. 000052     8.46%      call

0004. 000051     8.29%      cmp

0005. 000040     6.50%      add

2,3

4, 5

6

AFXRK2K4.root.exe
vanquish.dll

1

Parser written in Java with JAMA matrix packages, also constructed opcode tables
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Rare 14 Opcodes (parts per million)

std

shld
setle

setb
sbb

rdtsc
pushf

nop
int

imul
fstcw

fild

fdivp

bt

Opcode WormsVirusTrojanBotToolsUser  
RK

Kernel
RK

Goodware

9503148355627220

2454043545022

0021000020

2405222126806

7821133458431152313305881078

010801100012

12540059110116

8364742771101136216

010800921981402825

1126755406726708184916291182

120212200011

43801151330450357

5905252350037

118083704734030
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Comparison: Rare Opcode 
Frequencies

1.5%

1.1%

1.7%

3.7%

5.8%

4.1%

1.8%

1.8%

3.3%

6.4%

2.7%

5.5%

15.6%

37.0%

Kernel 
RK

1.0%

2.3%

2.3%

3.1%

3.7%

3.8%

3.2%

3.3%

3.9%

4.9%

5.1%

8.9%

16.6%

29.0%

User 
RK

1.3%

2.1%

2.9%

3.4%

3.4%

3.4%

3.7%

3.1%

4.3%

5.3%

5.9%

8.2%

19.0%

25.4%

Tools

0.5%

3.2%

3.0%

2.2%

2.5%

3.0%

2.6%

2.6%

3.3%

3.6%

6.8%

11.0%

14.1%

34.6%

Bot

0.6%

2.7%

3.2%

2.6%

3.0%

3.4%

3.4%

2.7%

3.5%

3.6%

7.3%

10.0%

15.4%

30.5%

Trojan

1.5%

2.1%

2.0%

3.2%

3.5%

2.7%

3.1%

5.5%

4.4%

5.9%

7.0%

9.1%

22.7%

16.1%

Virus

20

22

20

6

1078

12

116

216

25

1182

11

357

37

30

Goodware

1.6%std

2.3%shld

2.3%setle

3.2%setb

3.0%sbb

4.5%rdtsc

3.0%pushf

4.2%nop

4.0%int

5.0%imul

6.2%fstcw

8.7%fild

20.7%fdivp

22.2%bt

Worms
Opcode Performed stat distribution tests

on frequent (not shown) and 
rare (shown) opcodes across 7 MW
classes: Rootkits (kernel/user),
Virus /Worms, Trojan, Bots, Tools

Investigate: Which, if any, 
opcode frequency differ between 
goodware and MW classes and 
how strong is association between 
opcodes and MW classes?

Contingency tables (8 * 14): Testing association using Pearson’s chi square with post-hoc 

Haberman (1973) STAR (adjusted residual testing of individual cells) .. For further 

analytical procedures see Kim (2005), tinyurl.com/nws2s.

The chi-square test provides a method for testing the association between the row and 

column variables in a two-way table. The null hypothesis H0 assumes that there is no 

association between the variables (in other words, one variable does not vary according to 

the other variable), while the alternative hypothesis Ha claims that some association does 

exist. The alternative hypothesis does not specify the type of association, so close attention 

to the data is required to interpret the information provided by the test. 

The chi-square test is based on a test statistic that measures the divergence of the observed 

data from the values that would be expected under the null hypothesis of no association. 

This requires calculation of the expected values based on the data. The expected value for 

each cell in a two-way table is equal to (row total*column total)/n, where n is the total 

number of observations included in the table.
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Result: Rare Opcodes (ppm)

12101617423663Cramer’s V 
(in %)

Krn Usr Tools Bot Trojan Virus

std
shld
setle
setb
sbb
rdtsc
pushf
nop
int
imul
fstcw
fild
fdivp
bt

WormOp

NOP:
Virus makes use �
NOP sled, padding ?

High

Low

Higher

Lower

Similar

O
p
c
 F
r
e
q

INT: Rooktkits (and tools) make 
heavy use of software interrupts �
tell-tale sign of RK ?

Infrequent 14 opcodes
much better 
predictor!

Explains 12-63% of 
variation

Cramer’s V = strength of association between two variables
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3rd Fingerprint: Graph Structure

Goal: Compare ‘graph structure’ fingerprint of 
unknown binaries across non-malicious software 
and malware classes

Synopsis: Represent executables as callgraph, 
extract  ‘graph structural’ fingerprints for software 
classes

Main result (AICOM, 2007): Malware tends 
to have a lower basic block count, implying a 
simpler structure: Less interaction, fewer 
branches, limited functionality
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Samples: Generating Graphs

Procedure

1. Booted VMPlayer with XP image

2. a. Goodware: Inventoried all 
PEs from a WinSP2 box and 
sampled 280 files

b. Malware: Fixed 7 classes (e.g. 
virus,, rootkit, etc) and samples 
120 specimens from herm1t’s 
underground collection

3. Parsed structural info with IDA, 
using symbol augmentation with 
FLIRT and structure recognition 
with IDAPython

4. Exported structural info 
structures to MySQL database

5. Used SQL data with BinNavi, 
Python and Matlab to analyze 
callgraph

Giri.5209
Gobi.a
---------.b2b

3

AFXRK2K4.root.e
xe
vanquish.dll

1

---------.exe
-------.exe
---------.exe

2a

4

5

Thomas Dullien got HGI prize in 2006, used his software, BinNavi for this



Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 26

Results:
α-Fitting Pareto with Hill Check

Investigate whether 
discrete distributions of
d+(f); d-(f) and dbb(f)
follows a truncated power 
law (Pareto) 

kc is cutoff point 

α is slope of power law

Hill estimator used for 
consistency check
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Pareto distribution

k > 0 is location parameter

α > 0 is slope parameter

pdf

1 - cdf

The 80-20 rule (noted by Pareto 
studying Italian incomes in 1896)

Example: X is a random variable 
representing the income of a person in 
some country, and that this variable 
follows a power law distribution with 
parameters k = $1000 and a = 2.

By the complimentary cdf (ccdf)
1/100 of the people earn >= $10,000
1/10,000 of the people earn >= 
$100,000
1/1,000,000 of the people earn >= 
$1,000,000

See http://arxiv.org/abs/cond-mat/0103544 for “Exponential and power-law 

probability distributions of wealth and income in the United Kingdom and the 

United States”
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Power laws distribution in Graphs

Power law distributions abound in natural and 
engineered systems .. why is another lecture :D

A power law is a 
function f(x) where 
the value y is 
proportional to some 
power of the input x

y = f(x) ~ x-α

Properties of such “power-law” distributions are 
so-called “fat” or “heavy” tails

Graphs from Newman

From Manning (UCSB), 

http://www.physics.ucsb.edu/~mmanning/What_are_Power_Laws.html

Why are Power Law distributions called 'Heavy-tailed'?

Many processes in nature have density functions which follow a bell-curve, or normal, or 

Gaussian distribtuion. Heights of adults pulled randomly from a human population are 

generally gaussian, as are sums of tosses from a weighted die. You might think that this 

universal bell curve must indicate universal causes -- human heights must have something in 

common with weighted dice. The real reason for this universality, however, is simple 

statistics. The Central Limit Theorem states that the sum of random variables with finite 

mean and finite variance will always converge to a gaussian distribution. The mean is the 

average value of the random variable and the variance is a measure of how much individuals 

differ from that average. Therefore, the gaussian is a result of universal statistical processes 

and not similar causes.

Interestingly, if we relax the constraint that the variance and/or mean be finite (in other 

words, we allow arbitrarily large steps and/or don't require a characteristic size or mean) 

then the Central Limit theorem does NOT predict Gaussians. Instead, it predicts a variety of 

sum-stable distributions (such as the Cauchy distribution) which all look like power laws as 

x becomes large. Gaussian distributions drop off quickly (large events are extremely rare), 

but power law distributions drop off more slowly. This means that large events (the events 

in the tail of the distribution) are more likely to happen in a power law distribution than in a 

Gaussian. This is why we call power laws heavy-tailed. 
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Flowgraph metrics collected

Basic block count of  a 
function

Instruction count in a 
given basic block

Type of function: 
normal, import, 
library, thunk

In- and out-degree 
count of a given 
function

Function count of 
executable

Backdoor.Win32.Livup.c, 
sub_402400 

I illustrate the concept of a control flowgraph, and basic block by means of a fragment dissassembly of 

Backdoor.Win32.Livup.c. A control flow graph (CFG) is defined as a directed graph G = (V,E) in which 

vertices u, v in V  represent basic blocks and an edge e  in E represents a possible flow of control from u to v. 

A basic block describes a sequence of instructions without any jumps or jump targets in the middle. I show 

function sub_402400, consisting of six basic blocks. The assembly code for one basic block starting at 

0x402486 and ending with a jz at 0x4024B9 is given below. It consists of 16 instructions, of which two are 

calls to other functions. The loc_402486 basic block is located in the middle of the flowgraph given above.

loc_402486:

402486 push (0x4143E4, 4277220)

40248B push ebx

40248C lea eax, ss [esp + var_14]

402490 push eax

402491 mov ss [ebp + (0x14, 20)], edi

402494 mov ss [ebp + (0x18, 24)], edi

402497 call cs sub_402210

40249C push eax

40249D lea ecx, ss [ebp + (0x1c, 28)]

4024A0 mov byte ss [esp + var_4], byte 2

4024A5 call cs sub_401570

4024AA mov eax, ss [esp + var_14]

4024AE mov edx, ds [off_419064]

4024B4 lea ecx, ds [eax + (0xF4, 429)]

4024B7 cmp ecx, edx

4024B9 jz byte cs loc_4024D9
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Callgraph metrics collected

Basic block count of  a 
function

Instruction count in a 
given basic block

Type of function: 
normal, import, library, 
thunk

In- and out-degree 
count of a given 
function

Function count  of 
executable

Indegree is 2, outdegree is 6

Win32.Livup.c: sub_402400 Callgraph

I illustrate the concept of a callgraph by means of a fragment dissassembly of 

Backdoor.Win32.Livup.c function sub_402400. 

The figure shows the callgraph of function sub_402400, which indicates that sub_402400 is 

called twice, and in turn calls six functions. 
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Results: α fitting of callgraph

αindeg = [1.5-3], αoutdeg = [1.1-2.5] and αbb = [1.1-2.1] 
with a slightly greater spread for malware

The fitted power-law exponents αindeg, αoutdeg, αbb, together with rough callgraph size 

are shown above (color means the exec has more functions, e.g. dark red has ~10,339 

functions)
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Results: Difference Testing

Check whether there are 
statistical differences between 
(α, kc), the slope and the 
cutoff points of the 
distributions between 
goodware and malware

Only statistically relevant 
difference for basic block
metrics

Malware tends to have a 
lower basic block count, 
implying a simpler 
structure: Less interaction, 
fewer branches, limited 
functionality
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Byte-pattern, structural AV

Theory (worse): No algorithm can perfectly 
detect all possible viruses (Cohen, 1987). Even 
worse, MW exists which no algorithm can detect 
(Chess & White, 1990) 

Practice (bad): Classic AV metamorphic 
malware detection failing. Structural fingerprints 
probably of no help (alas ..)

Will give you now a glimpse of novel malware, and 
sketch alternative detection approaches

algorithm = steps for performing closed function-based computation
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Turing Machine: Assumptions

Challenge (Knuth): Make algorithm for “toss 
lightly until the mixture is crumbly”

Identifies computability with the computation 
of functions. All computable problems are 
function based. algorithm = steps for performing 
closed function-based computation

Closed: All input specified at start of computation 

Input x Function f(x) Output y

From Goldin (2005) “Breaking the Myth”:

Church-Turing Thesis: Whenever there is an effective method (algorithm) for obtaining the 

values of a mathematical function, the function can be computed by a TM. TMs are 

identfiied with the notion of effectiveness; computability is the current term for the same 

notion.

The Church-Turing thesis has since been reinterpreted to imply that Turing Machines model 

all computation, rather than just functions

This claim, which we call the Strong Church-Turing Thesis, is part of the mainstream theory 

of computation. In particular, it can be found in today's popular undergraduate theory 

textbooks, aka the Strong Church-Turing Thesis: A TM can do (compute) anything that a 

computer can do. We find this pars pro toto said by Sipser: “A TM can do anything that a 

computer can do.” ( Michael Sipser, Introduction to the Theory of Computation, 1997)

Knuth’s problem is not algorithmic because it is impossible for a computer to know how 

long to mix; this may depend on conditions such as humidity that cannot be predicted with 

certainty ahead of time. In the function-based mathematical worldview, all inputs must be 

specified at the start of the computation, preventing the kind of feedback that would be 

necessary to determine when it's time to stop mixing. 
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Novel MW: K-ary Malware

Serial k-ary: Scatter code snippets. k parts act 
one after the another. In the wild (approx, trivial) 
with k=2: Troj/Padodor-A. Proof-Of-Concept 
with 4<=k<=8 exists, but not released

Parallel k-ary:  k parts as processes execute 
simultaneously (can watch each other too). In the 
wild, found with k=4

Partition functionality: k distinct parts, with 
each part containing merely a subset of the total 
instructions. Human actionmay constitute a 
‘part’ as well
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Out of (Turing) Box? K-ary MW

Practical problem: How to disinfect, delete 
parallel processes that watch one another, 
regenerate w/ random names after deletion? K-ary
can be self-healing.

Result: Existing AV techniques unable to handle 
detection within real-time, practical constraints

Formalization problem: Even multi-tape TM 
cannot thoroughly describe k-ary MW, the 
interaction of its parts. Cohen model too limited.

From Filiol (2007):

This framework is based on vector Boolean functions instead of Turing machines as in the 

Cohen’s model. The essential reason for that choice comes from the fact that Turing 

machines cannot thoroughly describe the interaction between programs, even by considering 

multi-tape Turing machines Beside the fact that it would far too complex to consider them 

as formalisation tools, it has been shown that the generalization of the Cohen’s model is too 

limited.

Existing antivirus technologies are totally inefficient at detecting these k-ary codes as our 

study and experiments have confirmed.. It would be wrong to imagine that any technical 

protection against these codes is tractable due to the average complexity of their detection. 

Detection has to face combinatorial problems that cannot be solved in an amount of time 

that is compatible with commercial AV
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Quo vadis, AV?

Conjecture

Approaches based on classic TM (Church-Turing 
thesis  = computation as functions) may be 
insufficiently expressive to address these MW types 

Metamorphic malware 

Practical detection failing 
(techniques, strategy)

K-ary malware

Practical very bad, may 
be out of TM ‘box’?

� posit need for shift to ‘interactive computation 
model’, both in practice  and theory 

Thought to take away: Emphasis on interaction
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Interactive Computation (1997)

Anticipated by Turing (1936): Turing choice machines, 
interactive choice machines as another model of 
computation distinct from TMs and not reducible to it 

Theoretical bridge between TM (functions) and 
concurrency (communication) aspects

Open: I/O happens during computation, not just before or 
after (think control systems, OS,GUI). Continuous 
interaction with environment

Input Computation Output 

Environment

Alan Turing (1936), "On Computable Numbers, With an Application to the 

Entscheidungsproblem" Turing choice machines, interactive choice machines as another

model of computation distinct from TMs and not reducible to it. 

Goldin (2004): Persistent Turing Machines as a Model of Interactive Computation. 

PTMs are provably more expressive than TM.
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Why Does This Matter? AV 
Detection 

Conjecture: Detection of  metamorphic and k-
ary MW via TM-based techniques likely a practical 
/theoretical dead-end

Byte sequence-matching AV scanner based on 
classic TM function assumption: 

Input (data) ->function (decision) -> output 
(yes/no MW)

Heretic Conjecture: Interactive models more 
expressive than TMs. TM cannot compute all 
problems, nor do everything real computers do

Sig based AV is function-based approach.

Goldin (2005): “The Church-Turing Thesis: Breaking the Myth”

Claim 1. (Mathematical worldview) All computable problems are function-based.

Claim 2. (Focus on algorithms) All computable problems can be described by an algorithm.

Claim 3. (Practical approach) Algorithms are what computers do.

Furthermore, we looked at two more claims that have been used to corroborate the Turing 

Thesis myth:

Claim 4. (Nature of computers) TMs serve as a general model for computers.

Claim 5. (Universality corollary) TMs can simulate any computer.

For each of these claims, there is a grain of truth. By reformulating them to bring out the 

hidden assumptions, misunderstandings are removed. The following versions of the above 

statements are correct:

Corrected Claim 1. All algorithmic problems are function-based.

Corrected Claim 2. All function-based problems can be described by an algorithm.

Corrected Claim 3. Algorithms are what early computers used to do.

Corrected Claim 4. TMs serve as a general model for early computers.

Corrected Claim 5. TMs can simulate any algorithmic computing device.

Furthermore, the following claim is also correct:

Claim 6: TMs cannot compute all problems, nor can they do everything that real 

computers can do.
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Information-Gain Adversarial 
MW

Design philosophy is a systematic thwarting of 
AV information gain by presenting a 
metamorphic, multi-stage, encrypted, entry-point 
obscuring structure

Why is detection so hard, are detection rates so 
bad? Modern MW reduces relative information 
gain of AV scanning techniques

Defend with “Matrix Judo”: Adapt environment 
/defenses to control MW’s information gain for 
benefit of defender 
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Information Warfare: Get into MW’s decision 
cycle. Adapt responses to control MW’s next steps.

Related Idea: OODA Loop

http://www.stsc.hill.af.mil/crosstalk/2007/04/0704Ullman_Fig1.jpg

From http://www.valuebasedmanagement.net/methods_boyd_ooda_loop.html:

The OODA loop (Observe, Orient, Decide, and Act) is an  information strategy concept for information 

warfare developed by Colonel John Boyd (1927-1997). Although the OODA model was clearly created for 

military purposes, elements of the same theory can also be applied to business strategy. Boyd developed the 

theory based on his earlier experience as a fighter pilot and work on energy maneuverability. He initially used 

it to explain victory in air-to-air combat, but in the last years of his career he expanded his OODA loop theory 

into a grand strategy that would defeat an enemy strategically by “psychological” paralysis. 

Boyd emphasized that strategy should always revolve around changing the enemy’s behavior, not annihilating 

his forces. The parallel between Boyd’s ideas and Sun Tzu’s masterpiece, “The Art of War,” are obvious. Both 

Boyd and Sun Tzu advocate the ideas of harmony, deception, swiftness and fluidity of action, surprise, shock, 

and attacking the enemy’s strategy.

Colonel Boyd viewed the enemy (and ourselves) as a system that is acting through a decision making process 

based on observations of the world around it. The enemy will observe unfolding circumstances and gather 

outside information in order to orient the system to perceived threats. Boyd states that the orientation phase of 

the loop is the most important step, because if the enemy perceives the wrong threats, or misunderstands what 

is happening in the environment around him, then he will orient his thinking (and forces) in wrong directions 

and ultimately make incorrect decisions. Boyd said that this cycle of decision-making could operate at different 

speeds for the enemy and your own organization. The goal should be to to complete your OODA loop process 

at a faster tempo than the enemy’s, and to take action to lengthen the enemy’s loop. One tries to conduct many 

more loops “inside” the enemies OODA loop, causing the enemy to be unable to react to anything that is 

happening to him. 

Colonel Boyd stated that the the enemy’s OODA loop can be lengthened through a variety of means. Boyd’s 

aim is to generate “non-cooperate” centers of gravity for the enemy through ambiguity, deception, novel 

circumstances, fast transient maneuvers, and the use of Sun-Tzu’s idea of Cheng and Ch’i. By isolating the 

enemy’s centers of gravity and developing mistrust and cohesion within the system (making them “non-

cooperative”), friction will be greatly increased, paralysis in the system will set in, and the enemy will 

ultimately collapse. By attacking the thought process of the enemy / competitor, his morale and decision 

process can be shattered.
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Passive Defenses

Network/Host level:Honeypots and honeynets
(simulated decoys that detract from 'real' 
networks, hosts and services)

Prevent MW from identifying suitable target  by 
introducing irregularities, decoys (i.e
randomness) into environment

Program/OS level:Hot-patching binary, 
Address Space Layout Randomization (random 
heap, stack, library positioning)

For Network/Host level, see Honeynet project at http://www.honeynet.org/

For Program/OS level, see Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N., and 

Boneh, D. 2004. On the effectiveness of address-space randomization. In Proceedings of the 

11th ACM Conference on Computer and Communications Security

http://doi.acm.org/10.1145/1030083.1030124 
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Active Defense Framework

Observation Framework: Infer MW’s internal 
hypothesis structure via dynamic ‘black-box’
interaction (not  through ‘white-box’ scanning)

Seeks to model MW’s internal hypothesis 
structure, enter OODA loop, then control MW’s
decision/view of the world 

Control Framework: Dynamically choose 
strategies which control adversarial information 
gain for benefit of defense

OODA: Deception, swiftness, fluidity of action
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Observation Framework: PQS

Components: 1) Incoming observation, 2) 
multiple hypothesis generation, 3) hypothesis 
evaluation by models, 4) model selection

PQS: A DBMS framework that allows for 
process description queries against internal 
models (FSM, Markov, etc)

MW: Observe/entice MW actions. Have PQS 
model MW internal decision structure

Process Query System PQSs were initially designed to solve the Discrete Source Separation

Problem  by setting up a DBMS framework that allows for process description queries 

against internal models, a task for which traditional DBMS are unsuitable, since the queries 

(e.g. SQL) are typically formulated as Boolean expressions. These models can take the form 

of FSMs, rule sets, Hidden Markov models, Hidden Petri Nets, and more.

The overarching  goal is to detect processes by leveraging the correlation between events 

(such as observations) and the processes' states. PQS serves as the dynamic modeling 

framework of the malware. The necessary observation events are passively recorded and 

actively enticed through iterative interactions.
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Image from “Mathematics and Algorithmics of Process Detection”, G. Cybenko (Dartmouth) 

Processes have hidden states which emit observables. The relationship between observables 

and states is not bijective, meaning a given observation may be emitted by more than one 

state. The so-called `tracks' are associations of observations to processes. Hypotheses 

represent consistent tracks that explain the observables. 

The hypotheses in our domain correspond to the malware's internal control structure, which 

is inferred from its behaviour through observation. We propose that a PQS serve to 

dynamically `black-box model' modern malware. The necessary observation events can be 

both passively recorded and actively enticed through iterative interactions.
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Control Framework: Games

Zero-sum: Only Win-Lose possible
Non-zero-sum:Win-Win possible
Imperfect:Hidden information
Iterative: Play many times

Game Theory: Interactive framework to 
weaken MW’s useful and strengthen MW’s useless 
information gain

MW: Following PQS model of MW, want to 
simulate MW ‘win’ while MW actually ‘loses’

Iterative imperfect non-zero-sum games The goal of the control framework is to create the 
illusion of win-win (non-zero-sum) viz the malware's goals by iteratively either weakening 
useful/accurate and strengthening useless/misleading information gain through defensive 
strategies. Game theory provides a suitable interactive framework.
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History of Game Theory 

Incomplete information and Bayesian games

 players with unforeseeable behaviour enter the scene

Nash equilibrium

 players 1 and 2,

 actions  x,y and

 profits ππππ1(x,y), ππππ2(x,y)

 Nash equilibrium xN, yN

 reaction curves R1(y), R2(x)
Theory of Games and Economic Behavior

 1942 the Michael Curtiz film Casablanca

 1921 Emile Borel minmax games

 1928 John von Neumann  minmax theorem

 1944 John von Neumann & Oscar Morgenstern

1913 Ernst Zermelo

chess as a zero sum game

 John Harsanyi

Nobel laureates
 John Nash

 Nash equilibrium

 Reinhard Selten

 incomplete information, Bayesian games, 1967

 dynamic games
 subgame-perfect equilibrium, 1965

1953 prisoner’s dilemma game 

Harold W. Kuhn & Alan W. Tucker

an adjustment

equilibrium

computation

of xN and yN

to reach the

 ππππ1111(R1(y),y)=max ππππ1111(x,y)x

 ππππ2222(x, R2(x))=max ππππ2222(x,y)y

 xN =R1(y
N),  yN =R2(x

N)

 1950 John Nash introduces Nash equilibrium concept

 1953 Lloyd Shapley introduces Shapley value for 

cooperative games

 nobody knows 
 the other players’
 true intentions, 
 their types...

yet, they must 
play the game

 folk wisdom  the Holy Bible, Talmud

 combinatorial games  Pascal, Bernoulli (16th century)

 an example of real life games

process

 xk+1 =R1(yk)

 yk+1 =R2(xk+1)



Idea: Repea-
ted, Bayesian, 
imperfect 
information 
game with 
MW
Goal:
OODA-loop 
subverting 
interactive 
strategic ‘judo‘
by the defense

http://www.sal.hut.fi/Research/Posters/

 Robert Auman, Thomas Schelling

 Cooperative  games

 infinitely repeated games, 2005

Propose interactive, OODA-loop subverting strategic `judo' against modern malware 

marks a philosophical shift. From a predominantly byte sequence-matching white-

box scanners premised on classic TM function-based assumptions, we suggest 

moving towards more `Interactive Computation' through the use of interactive 

iterative games and black-box process modeling.



Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 48

111

-25-7

-52020

-1100-10

055

55-5

DoS

Pen

Scan

SFLTSHPS

Scan

If XP pen

If filter DoS …

……

Internal PQS Models

PQS

Choose / generate strategy

Malware action and 

responses feedback for 

model selection, 

evaluation, generation

Def
Malw S…

<UO>

Key:

interact, 

interrogate, 

observe,

adapt -> control 

system

Pulling it Together: Misleading MW

The feedback loop of this framework is sketched in a toy example in above figure. Suppose 

the malware's toy internal hypothesis structure and strategies are modeled by Scan;if XP 

penetrate;if filtered DoS in a PQS internal model.

The defense's strategies are S (no defense), SHNP (honeypot), SFLT (filter/block ICMP 

response). The game matrix shows the payoffs of the defense's and malware's strategy 

combinations. The malware starts scanning and wants to get to [Pen; S] penetrating a real 

host. The defense wants to engage sequential strategies such that the malware penetrates a 

fake host [Pen; SHP ], thereby giving the illusion of a win for the malware while learning 

more about it. Again, the defense wants to iteratively control, not necessarily minimize the 

malware's DKL(p(xjHi)jjp(xjHj )). Strategies may not be fixed and dynamically generated as 

PQS models adapt to the malware responses, as indicated by by S... (new defense strategy) 

and < UO > (Unknown observation)
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MW to Come: Satan Virus

Procedure: Give some powers (like search 
people’s files and emails) and after some use, it 
blackmails user into propagating it by threatening 
to reveal your searches to the victim, bribes you 
with more access, etc.

Use humans explicitly as ‘code’: Entrapment 
though greed, malice and short-sightedness, then 
uses human intelligence for propagation 

Idea: Forces humans via carrot and stick principle 
to do its bidding
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DARPA BAA07-024: Determine whether chip 
manufactured in untrusted environment can be 
trusted to perform just operations specified by 
specification/design and no more 

Picture from BAA

MW to Come: HW-Based

From Wikipedia:

An application-specific integrated circuit (ASIC) is an integrated circuit (IC) customized 

for a particular use, rather than intended for general-purpose use. For example, a chip 

designed solely to run a cell phone is an ASIC. 

Field-programmable gate arrays (FPGA) contain programmable logic components called 

"logic blocks", and programmable interconnects  that allow the same FPGA to be used in 

many different applications 

The general term application specific integrated circuit includes FPGAs, but most designers 

use ASIC only for non field programmable devices (e.g. standard cell or sea of gates) and 

make a distinction between ASIC and FPGAs. 

FPGAs are usually slower than their application-specific integrated circuit (ASIC) 

counterparts, as they cannot handle as complex a design, and draw more power. But their 

advantages include a shorter time to market, ability to re-program in the field to fix bugs, 

and lower non-recurring engineering costs. Vendors can sell cheaper, less flexible versions 

of their FPGAs which cannot be modified after the design is committed. The designs are 

developed on regular FPGAs and then migrated into a fixed version that more resembles an 

ASIC. 
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Malicious IC 1:
Turn off Error Reporting

Pictures from BAA
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Malicious IC 2:
Trigger Write Enable

Pictures from BAA

Expert opinion:

“In a corporate environment it is next to impossible to verify the integrity of an integrated 

circuit. Most systems employ (re-)programmable circuits or even microprocessors. Even if it 

should be feasible to verify the underlying logic, you would have to re-do (large) parts of the 

verification process in case of any update. 

[..]

Especially in the case of a (purported) security fix the risk of deploying a trojanised

firmware would be weighted much lower than the (possible) impact of the (purported) 

security vulnerability. [..]

And regarding the impact on computer forensics: Johanna Rutkowska demonstrated how to 

reprogram the North Bridge of an AMD platform in a way that at the same physical 

address the DMA controller and the CPU access different portions of memory. Mind 

you, that was not an undocumented feature or a faulty IC. It's just an example of 

"unexpected" or "clever" usage of documented system behavior - and an example of bad 

design as well.”
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Quantum Cryptography

In short, quantum cryptography solves (1-time pad) 
key distribution problem

Quantum channel sensitive to 
Eve  .. and noise!

Picture from Janusz
Kowalik (U. Washington) 

How it works:

User 1 sends photons:          |  |  /  - - \ - |  - / 

User 2 sets filter:            X + + X X X + X + + 

User 2 receives photons       /  |  - \ /  \ - /   - |

User 2 tells User 1 (publicly) settings

User 1 tells User 2 (publicly) which settings correct:  2, 6, 7, 9

Both users keep those states correctly measured:

*  |  *  *  *  \ - *  - *

Using { \, | } = 0 and { - , / } = 1 yields:

0 0 1 1 : Shared Key for one time pad

Why it can detect eavesdroppers (from 
http://www.csa.com/discoveryguides/crypt/overview.php):

If an eavesdropper Eve tries to gain information about the key by intercepting the photons as 

they are transmitted from Alice to Bob, measuring their polarization, and then resending 

them so Bob does receive a message, then since Eve, like Bob, has no idea which basis 

Alice uses to transmit each photon, she too must choose bases at random for her 

measurements. If she chooses the correct basis, and then sends Bob a photon matching the 

one she measures, all is well. However, if she chooses the wrong basis, she will then see a 

photon in one of the two directions she is measuring, and send it to Bob. If Bob's basis 

matches Alice's (and thus is different from Eve's), he is equally likely to measure either 

direction for the photon. However, if Eve had not interfered, he would have been guaranteed 

the same measurement as Alice. In fact, in this intercept/resend scenario, Eve will corrupt 

25 percent of the bits. So if Alice and Bob publicly compare some of the bits in their key 

that should have been correctly measured and find no discrepancies, they can conclude that 

Eve has learned nothing about the remaining bits, which can be used as the secret key. 
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Quantum Malware?

Would need really new approaches in terms of 
Quantum AV (metrology, error correction) to 
clean, restore data. Open interesting problem!

Not speculative: Quantum Cryptography used 
today: Swiss national elections, Oct 21st 2007 
(http://tinyurl.com/3ctx4y ) 

To come? QMW designed to decohere qbit’s
phase and thus randomize data through phase 
gates, distort operations of quantum networks by 
malicious interference

See New Scientist Article: http://tinyurl.com/22fbcn

A quantum computer is any device for computation that makes direct use of distinctively quantum 

mechanical phenomena, such as superposition and entanglement, to perform operations on data. In a classical 

(or conventional) computer, information is stored as bits; in a quantum computer, it is stored as qubits

(quantum bits). The basic principle of quantum computation is that the quantum properties can be used to 

represent and structure data, and that quantum mechanisms can be devised and built to perform operations with 

this data.

Researchers say the emergence of quantum malware is an inevitability, but only recently has serious debate 

about protecting computers from such programs started, compared to the decades of research and billions of 

dollars already committed to quantum computer development. Quantum computers have yet to be fully 

realized, but a "quantum Internet" comprised of optical fiber and free space point-to-point networks dedicated 

to channeling quantum information already exists. This prompted University of Toronto researchers Lian-Ao

Wu and Daniel Lidar to author a 2005 paper detailing a defense against quantum malware. Lidar says a 

quantum communication network will invite interference like any other network, while hackers could 

"decohere" a quantum bit's phase information and cause the output to randomize. Wu and Lidar recommend 

that quantum systems be kept offline as long as possible, and they propose a back-up system in which all 

networked quantum computers have an ancillary register of qubits equal in size to the quantum computer's 

memory, which is isolated whenever the computer is linked to the network to prevent direct infection. All 

members of a network share a secret sequence of run-time intervals that are very brief, and that must be 

considerably shorter than the periods when the calculations are stored in the ancillary qubit register. The setup 

of quantum computer networks in which more than a few kilometers separates the computers necessitates the 

inclusion of "quantum repeater" boxes, which could be hijacked. Lidar suggests an alternative device he and 

Wu conceived that uses the most simple optical components installed at regular intervals along the optical 

fiber.
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Synopsis/Thoughts/Speculation

For practical deployment, leverage ‘black-box’
modeling techniques and interaction frameworks. 
For HW-based, who knows??

Philosophically, modern malware investigation 
may resemble naturalist approaches of 
Alexander Humboldt/E.O. Wilson .. Could MW 
‘art’ be imitating life along lines that make MW 
investigation a new subfield of natural sciences?

Need push in theory development in context of 
interactive models to formalize modern software 
malware (maybe hardware too?)



Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 56

Advice to students (especially)

Dare to be bold, stake out a position, then argue 
scientifically, empirically and logically

Imagination as the first step is much more 
important than knowledge

Be wrong at times, you cannot grow if you do 
not take that chance

Thank you for your time and the invitation to 
speak at the Horst Görtz Institut 2007 at the Ruhr 
Universität Bochum
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