
Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 1

Daniel Bilar
Department of Computer Science
Wellesley College
Wellesley (MA), USA

dbilar <at> wellesley dot edu

Flying below the
Radar: What modern
malware tells us

Talking about engineering and theory challenges for malware to come

Prediction is very hard, especially about the future

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 2

Overview

Results of author’s structural MW analysis
Propose moving towards iterative games
and black-box process modeling, as
expressed by interactive computing models

Classic AV pattern matching identification
may have reached its practical and
theoretical limits with present modern MW

MW to come? k-ary, Satan, IC and Quantum

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 3

Metamorphism/Polymorphism

Metamorphic
malware generally do
not use encryption, but
mutate body in
subsequent generations

Polymorphic
malware contain
decryption routines
which decrypt
encrypted constant
parts of body

Confusing: Sometimes, polymorphism subsumes
both terms, especially in ‘older’ work

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 4

Metamorphic Detection

In Feb 2007, 17 state-of-the-
art AV scanners checked
against 12 well-known,
previously submitted, highly
polymorphic and
metamorphic malware
samples.
Detection miss rates:
100% to 0%, ave of 38%.

Metamorphismmutate body
in subsequent generations

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 5

Today: Highly variable MW

Strategy:
Server-side metamorphic
High, at times bursty, intensity release
Few instances (10s-100s) per variant

Bagle/Beagle: email-born worm, first appeared
in 2004

Distinct variants since Jan 9 07: ~30,000
Average distinct variants per day: 625

Not the only one: Feebs, Warezov ..

From Commtouch’s Bagle Report: http://commtouch.com/downloads/Bagle-

Worm_MOTR.pdf

The server-side polymorphic technique of writing and releasing large numbers of variants,

each variant distributed via just a few email messages, is used by the malware writers to

enable them to continue to defeat traditional AV solutions that are based on signatures or

heuristic rules. These common anti-virus techniques depend on prior knowledge of malware

to devise tools to block future outbreaks. Since server-side polymorphs like Bagle distribute

each variant in a small number of emails and then switch to new variants, by the time

traditional AV vendors can develop a signature or heuristic appropriate for one variant its

lifecycle has ended and new variants are being propagated. Overwhelmed with a constant

barrage of new variants, traditional AV solutions have difficulty keeping up”

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 6

Bagle Metamorphic Strategy

Strategy:
Server-side
metamorphic

High, bursty,
intensity release

Few instances
(10s-100s) per
variant

Result: ‘RoQ’ attack on
AV detection system!

From Commtouch’s Bagle Report:

The upper graph shows intensity, the lower graph graph illustrates the average number of

instances, or copies of the same code, per variant each day of the report period.

The data lead to the following key conclusions: Bagle-Worm writers deliberately and

consistently circulate low-volume variants. ‘Stealth’ outbreaks are engineered to stay below

the radar of AV engines. By distributing each malware variant in very low volumes (up to a

few hundred instances), the malware effectively evades detection by many anti-virus

solutions.

From an economic and systemic point of view, this is very smart. A set of strategies to

attack *the AV cost structure* is a variant of so-called Reduction-Of-Quality attacks on

systems. The result is that numerous malware variants never even reach the stage of being

analyzed by the AV vendors to create a signature or heuristic.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 7

‘Classic’ Metamorphic
Techniques

Control Flow: Instruction reordering, branch
conditions reversal, JMPs inserted randomly,
subroutine permutations

Instruction: Garbage opcodes in unreachable
code areas, opcode substitution with semantic
equivalents (e.g. SUB EBX, EBX into XOR EBX,
EBX), register swapping

Picture from Szor

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 8

Advanced Metamorphic
Techniques

To integrate itself,
MW disassembles &
rebuilds host
Non-trivial:Must
iteratively recompute
relative addresses
after insertions.
[Requires 32MB RAM, explicit
section names (DATA, CODE,
etc.) in host binary]

Code Integration: Malware merges into benign
host code. “Islands” of MW code positioned into
random locations and linked by jumps. No
guarantee MW entry point will be reached

T-1000 from “Terminator 2”

Examples: ZMist and Simile

See an overview of the Mistfall engine used in ZMist at http://vx.netlux.org/lib/vzo21.html

The whole procedure is non trivial

1) Addresses are based on offsets, which must be recomputed when new

instructions are inserted

2) MW must perform complete instruction-by-instruction disassembly and re-

generation of the host binary. This is an iterative process: rebuild with new

addresses, see if branch destinations changed, then rebuild again

3) Host binary requirements: 32MB of RAM and explicit section names (DATA,

CODE, etc.) in the host binary, so it does not work with every host binary.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 9

ZMist Code Integration Process

Pick a Portable
Executable binary
< 448Kb in size

Disassemble, insert space for new
code blocks, generate new binary

Mutate virus body
• Split into jump-linked “islands”
• Mutate opcodes (OR↔TEST)
• Swap register and PUSH/POP, etc.

Encrypt virus body by
with randomly
generated key,
insert mutated decryptor

Insert random
garbage
instructions

Decryptor must
restore host’s
registers to
preserve host’s
functionality

Randomly insert
indirect call OR jump
to decryptor’s entry
point OR rely on
instruction flow to
Reach, then decrypt
MW step by step into
32 K writable section

Writable 32K data
section to hold
decrypted body

http://pferrie.tripod.com/papers/zmist.pdf

Picture adapted from
Shmatikov

From http://pferrie.tripod.com/papers/zmist.pdf

The polymorphic decryptor consists of .islands. of code that are integrated into random locations
throughout the host code section and linked together by jumps. The decryptor integration is
performed in the same way as for the virus body integration . existing instructions are moved to either
side, and a block of code is placed in between

them. The polymorphic decryptor uses absolute references to the data section, but the Mistfall engine
will update the relocation information for these references too.

An anti-heuristic trick is used for decrypting the virus code: instead of making the section writable in
order to alter its code directly, the host is required to have, as one of the first three sections, a section
containing writable, initialized data. The virtual size of this section is increased by 32 KB, large
enough for the decrypted body and all the variables used during decryption. This allows the virus to
decrypt code directly into the data section, and transfer control to there. If such a section cannot be
found, then the virus will infect the file without using encryption. The decryptor will receive control
in one of four ways: via an absolute indirect call (0xFF 0x15), a relative call (0xE8), a relative jump
(0xE9), or as part of the instruction flow itself. If one of the first three methods is used, the transfer of
control will usually appear soon after the entry point. In the case of the last method, though, an island
of the decryptor is simply inserted into the middle of a subroutine, somewhere in the code (including
before the entry point).

All used registers are preserved before decryption and restored afterwards, so the original code will
behave as before. Zombie calls this last method .UEP., perhaps an acronym for Unknown Entry
Point, because there is no direct pointer anywhere in the file to the decryptor.

When encryption is used, the code is encrypted with ADD/SUB/XOR with a random key, and this
key is altered on each iteration by ADD/SUB/XOR with a second random key. In between the
decryption instructions are various garbage instructions, using a random number of registers, and a
random choice of loop instruction, all produced by the Executable Trash Generator engine (ETG),
also written by Zombie. It is clear that randomness features very heavily in this MW.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 10

Approach: Structural Analysis

Goal: Identify (and classify) modern malware
quicker

Problem: Signature matching and checksums
tend to be too rigid, heuristics and emulation may
take too long a time

Approach: Find classifiers (‘structural
fingerprints’) that are statistical in nature,
‘fuzzier’ metrics between static signatures and
dynamic emulation and heuristics

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 11

Meta Idea

Signatures are relatively
exact and very fast, but show
little tolerance for
metamorphic, polymorphic
code

Obfuscation toleranceA
n
a
ly
si
s
ti
m
e

Heuristics and
emulation can be used to
reverse engineer, but these
methods are relatively slow
and ad hoc (an art, really)

Statistical structural metrics may be a ‘sweet spot’, more
robust towards metamorphic obfuscation techniques

Want analysis speed of signature with tolerance of obfuscation for heuristics/emulation

Most statistical metrics do not care about permutations. Trivial example is statistical

averaging: ave(5,2,1) = ave (1,2,5) = 2.67-> idea is to find metrics that are more resilient to

obfuscated code by tolerating of permutations etc

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 12

Structural Perspectives

Primarily
static

Graph
structural
properties

Explore inter- and
intra-control flow of
functions

Callgraph

Primarily
dynamic

API call vector Observe API calls
made

Win 32 API
call

Primarily
static

Opcode
frequency
distribution

Count different
instructions

Assembly
instruction

static /
dynamic?

Statistical
Fingerprint

DescriptionStructural
Perspective

Research 2005-2007: Tried several approaches
for statistical structural discrimination

static = read malware binaries

dynamic = execute malware binaries

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 13

1st Fingerprint: Win 32 API Calls

Goal: Classify malware quickly into a family (set
of variants make up a family)

Synopsis: Observe and record Win32 API calls
made by malicious code during execution, then
compare them to calls made by other malicious
code to find similarities

Joint work with Chris Ries (honors student)

Main result (2005) : Simple VSM model yields
> 80% correct classification (after tuning)

Classification purposes

Chris Ries (2005, CS honor’s thesis, Colby College), now at VigilantMinds

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 14

Win 32 API calls: Overview

Data
Collection

Vector
Builder

Vector Comparison

Database

Malicious Code FamilyLog File

Data Collection: Run malicious code,
recording Win32 API calls it makes

Vector Builder: Build count vector from
collected API call data and store in database

Comparison: Compare vector to all other
vectors in the database to see if its related to any
of them

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 15

Win 32 API Call: Call Recording

Malicious process is started in suspended state
DLL is injected into process’s address space

When DLL’s DllMain() function is executed, it hooks
the Win32 API function

Calling
Function

Target
Function

Target
Function

Calling
Function

Hook Trampoline

Function call before hooking Function call after hooking

Hook records the call’s time and arguments, calls the
target, records the return value, and then returns the
target’s return value to the calling function.

Slide from Chris Ries

The method that the DLL uses to hook the function was developed for Microsoft’s Detours

Research project .

For trampoline, see Ivanov, “API hooking revealed”,

http://www.codeproject.com/system/hooksys.asp

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 16

Win 32 API call: Call Vector

Column of the vector represents a hooked function and
count (i.e number of times called)

1200+ different functions recorded during execution

For each malware specimen, vector values recorded to
database

…01561262Number of
Calls

…EndPath()CloseHandle()FindFirstFileA()FindClose()Function
Name

Number of times a function is called can vary during execution. Run all malware in same

environment to produce similar execution paths. Use comparison system that will try to

account for this

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 17

Win 32 API call: Comparison

Computes cosine similarity measure csm
between vector and each vector in the database

=
•

=
21

21
21),(

vv

vv
vvcsm vv

vv
vv

If csm(vector, most similar vector in the
database) > threshold � vector is classified
as member of familymost-similar-vector

Otherwise vector classified as member of
familyno-variants-yet

v 1

v2

Maintains a database of all vectors that it has already processed. When a vector is inputted

into the system, it is compared to every vector in the database in order to find the most

similar one

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 18

Results: Win 32 API Calls
Collected 77 malware samples

33Moega
58SDBot

66Welchia

11Pestlogg
er

01Spybot

12
Randex

23Sasser
88Netsky
55MyLife
810MyDoom

22Mitgleid
er

11Klez
02Inor
11Gibe
23Frethem
11Blaster
1415Beagle

4
1
2

4
1
2

Banker
Nibu
Tarno

01Apost

correct

of
members

Family

2720480.620.99

1132610.790.95

1041610.790.9

842630.820.85

563630.820.8

465620.80.75

285620.80.7

miss. fam.bothfalse fam.���� #���� %Threshold

Classification made by 17
major AV scanners
produced 21 families

(some aliases)

~80 % correct with

csm threshold 0.8

Discrepancies

Misclassifications

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 19

2nd Fingerprint:
Opcode Frequency Distribution
Synopsis: Statically disassemble the binary,
tabulate the opcode frequencies and construct a
statistical fingerprint with a subset of said
opcodes.

Goal: Compare opcode fingerprint across non-
malicious software and malware classes for
quick identification (and later classification)
purposes.

Main result (ICGeS, 2006): ‘Rare’ opcodes
explain more data variation then common ones

Identification purposes

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 20

Opcode Distribution

Procedure

1. Booted VMPlayer with XP
image

2. Inventoried PEs from C. Ries
malware collection with
Advanced Disk Catalog

3. Fixed 7 classes (e.g. virus,,
rootkit, etc), chose random PEs
samples with MS Excel and
Index your Files

4. Ran IDA with modified
InstructionCounter plugin on
sample PEs

5. Augmented IDA output files
with PEID results (compiler,
packer) and ‘class’

6. Wrote Java parser for raw data
files and fed JAMA’ed matrix
into Excel for analysis

Giri.5209
Gobi.a
---------.b

size: 12288

totalopcodes: 615

compiler: unknown

class: virus

0001. 000112 18.21% mov

0002. 000094 15.28% push

0003. 000052 8.46% call

0004. 000051 8.29% cmp

0005. 000040 6.50% add

2,3

4, 5

6

AFXRK2K4.root.exe
vanquish.dll

1

Parser written in Java with JAMA matrix packages, also constructed opcode tables

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 21

Rare 14 Opcodes (parts per million)

std

shld
setle

setb
sbb

rdtsc
pushf

nop
int

imul
fstcw

fild

fdivp

bt

Opcode WormsVirusTrojanBotToolsUser
RK

Kernel
RK

Goodware

9503148355627220

2454043545022

0021000020

2405222126806

7821133458431152313305881078

010801100012

12540059110116

8364742771101136216

010800921981402825

1126755406726708184916291182

120212200011

43801151330450357

5905252350037

118083704734030

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 22

Comparison: Rare Opcode
Frequencies

1.5%

1.1%

1.7%

3.7%

5.8%

4.1%

1.8%

1.8%

3.3%

6.4%

2.7%

5.5%

15.6%

37.0%

Kernel
RK

1.0%

2.3%

2.3%

3.1%

3.7%

3.8%

3.2%

3.3%

3.9%

4.9%

5.1%

8.9%

16.6%

29.0%

User
RK

1.3%

2.1%

2.9%

3.4%

3.4%

3.4%

3.7%

3.1%

4.3%

5.3%

5.9%

8.2%

19.0%

25.4%

Tools

0.5%

3.2%

3.0%

2.2%

2.5%

3.0%

2.6%

2.6%

3.3%

3.6%

6.8%

11.0%

14.1%

34.6%

Bot

0.6%

2.7%

3.2%

2.6%

3.0%

3.4%

3.4%

2.7%

3.5%

3.6%

7.3%

10.0%

15.4%

30.5%

Trojan

1.5%

2.1%

2.0%

3.2%

3.5%

2.7%

3.1%

5.5%

4.4%

5.9%

7.0%

9.1%

22.7%

16.1%

Virus

20

22

20

6

1078

12

116

216

25

1182

11

357

37

30

Goodware

1.6%std

2.3%shld

2.3%setle

3.2%setb

3.0%sbb

4.5%rdtsc

3.0%pushf

4.2%nop

4.0%int

5.0%imul

6.2%fstcw

8.7%fild

20.7%fdivp

22.2%bt

Worms
Opcode Performed stat distribution tests

on frequent (not shown) and
rare (shown) opcodes across 7 MW
classes: Rootkits (kernel/user),
Virus /Worms, Trojan, Bots, Tools

Investigate: Which, if any,
opcode frequency differ between
goodware and MW classes and
how strong is association between
opcodes and MW classes?

Contingency tables (8 * 14): Testing association using Pearson’s chi square with post-hoc

Haberman (1973) STAR (adjusted residual testing of individual cells) .. For further

analytical procedures see Kim (2005), tinyurl.com/nws2s.

The chi-square test provides a method for testing the association between the row and

column variables in a two-way table. The null hypothesis H0 assumes that there is no

association between the variables (in other words, one variable does not vary according to

the other variable), while the alternative hypothesis Ha claims that some association does

exist. The alternative hypothesis does not specify the type of association, so close attention

to the data is required to interpret the information provided by the test.

The chi-square test is based on a test statistic that measures the divergence of the observed

data from the values that would be expected under the null hypothesis of no association.

This requires calculation of the expected values based on the data. The expected value for

each cell in a two-way table is equal to (row total*column total)/n, where n is the total

number of observations included in the table.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 23

Result: Rare Opcodes (ppm)

12101617423663Cramer’s V
(in %)

Krn Usr Tools Bot Trojan Virus

std
shld
setle
setb
sbb
rdtsc
pushf
nop
int
imul
fstcw
fild
fdivp
bt

WormOp

NOP:
Virus makes use �
NOP sled, padding ?

High

Low

Higher

Lower

Similar

O
p
c
 F
r
e
q

INT: Rooktkits (and tools) make
heavy use of software interrupts �
tell-tale sign of RK ?

Infrequent 14 opcodes
much better
predictor!

Explains 12-63% of
variation

Cramer’s V = strength of association between two variables

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 24

3rd Fingerprint: Graph Structure

Goal: Compare ‘graph structure’ fingerprint of
unknown binaries across non-malicious software
and malware classes

Synopsis: Represent executables as callgraph,
extract ‘graph structural’ fingerprints for software
classes

Main result (AICOM, 2007): Malware tends
to have a lower basic block count, implying a
simpler structure: Less interaction, fewer
branches, limited functionality

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 25

Samples: Generating Graphs

Procedure

1. Booted VMPlayer with XP image

2. a. Goodware: Inventoried all
PEs from a WinSP2 box and
sampled 280 files

b. Malware: Fixed 7 classes (e.g.
virus,, rootkit, etc) and samples
120 specimens from herm1t’s
underground collection

3. Parsed structural info with IDA,
using symbol augmentation with
FLIRT and structure recognition
with IDAPython

4. Exported structural info
structures to MySQL database

5. Used SQL data with BinNavi,
Python and Matlab to analyze
callgraph

Giri.5209
Gobi.a
---------.b2b

3

AFXRK2K4.root.e
xe
vanquish.dll

1

---------.exe
-------.exe
---------.exe

2a

4

5

Thomas Dullien got HGI prize in 2006, used his software, BinNavi for this

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 26

Results:
α-Fitting Pareto with Hill Check

Investigate whether
discrete distributions of
d+(f); d-(f) and dbb(f)
follows a truncated power
law (Pareto)

kc is cutoff point

α is slope of power law

Hill estimator used for
consistency check

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 27

Pareto distribution

k > 0 is location parameter

α > 0 is slope parameter

pdf

1 - cdf

The 80-20 rule (noted by Pareto
studying Italian incomes in 1896)

Example: X is a random variable
representing the income of a person in
some country, and that this variable
follows a power law distribution with
parameters k = $1000 and a = 2.

By the complimentary cdf (ccdf)
1/100 of the people earn >= $10,000
1/10,000 of the people earn >=
$100,000
1/1,000,000 of the people earn >=
$1,000,000

See http://arxiv.org/abs/cond-mat/0103544 for “Exponential and power-law

probability distributions of wealth and income in the United Kingdom and the

United States”

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 28

Power laws distribution in Graphs

Power law distributions abound in natural and
engineered systems .. why is another lecture :D

A power law is a
function f(x) where
the value y is
proportional to some
power of the input x

y = f(x) ~ x-α

Properties of such “power-law” distributions are
so-called “fat” or “heavy” tails

Graphs from Newman

From Manning (UCSB),

http://www.physics.ucsb.edu/~mmanning/What_are_Power_Laws.html

Why are Power Law distributions called 'Heavy-tailed'?

Many processes in nature have density functions which follow a bell-curve, or normal, or

Gaussian distribtuion. Heights of adults pulled randomly from a human population are

generally gaussian, as are sums of tosses from a weighted die. You might think that this

universal bell curve must indicate universal causes -- human heights must have something in

common with weighted dice. The real reason for this universality, however, is simple

statistics. The Central Limit Theorem states that the sum of random variables with finite

mean and finite variance will always converge to a gaussian distribution. The mean is the

average value of the random variable and the variance is a measure of how much individuals

differ from that average. Therefore, the gaussian is a result of universal statistical processes

and not similar causes.

Interestingly, if we relax the constraint that the variance and/or mean be finite (in other

words, we allow arbitrarily large steps and/or don't require a characteristic size or mean)

then the Central Limit theorem does NOT predict Gaussians. Instead, it predicts a variety of

sum-stable distributions (such as the Cauchy distribution) which all look like power laws as

x becomes large. Gaussian distributions drop off quickly (large events are extremely rare),

but power law distributions drop off more slowly. This means that large events (the events

in the tail of the distribution) are more likely to happen in a power law distribution than in a

Gaussian. This is why we call power laws heavy-tailed.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 29

Flowgraph metrics collected

Basic block count of a
function

Instruction count in a
given basic block

Type of function:
normal, import,
library, thunk

In- and out-degree
count of a given
function

Function count of
executable

Backdoor.Win32.Livup.c,
sub_402400

I illustrate the concept of a control flowgraph, and basic block by means of a fragment dissassembly of

Backdoor.Win32.Livup.c. A control flow graph (CFG) is defined as a directed graph G = (V,E) in which

vertices u, v in V represent basic blocks and an edge e in E represents a possible flow of control from u to v.

A basic block describes a sequence of instructions without any jumps or jump targets in the middle. I show

function sub_402400, consisting of six basic blocks. The assembly code for one basic block starting at

0x402486 and ending with a jz at 0x4024B9 is given below. It consists of 16 instructions, of which two are

calls to other functions. The loc_402486 basic block is located in the middle of the flowgraph given above.

loc_402486:

402486 push (0x4143E4, 4277220)

40248B push ebx

40248C lea eax, ss [esp + var_14]

402490 push eax

402491 mov ss [ebp + (0x14, 20)], edi

402494 mov ss [ebp + (0x18, 24)], edi

402497 call cs sub_402210

40249C push eax

40249D lea ecx, ss [ebp + (0x1c, 28)]

4024A0 mov byte ss [esp + var_4], byte 2

4024A5 call cs sub_401570

4024AA mov eax, ss [esp + var_14]

4024AE mov edx, ds [off_419064]

4024B4 lea ecx, ds [eax + (0xF4, 429)]

4024B7 cmp ecx, edx

4024B9 jz byte cs loc_4024D9

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 30

Callgraph metrics collected

Basic block count of a
function

Instruction count in a
given basic block

Type of function:
normal, import, library,
thunk

In- and out-degree
count of a given
function

Function count of
executable

Indegree is 2, outdegree is 6

Win32.Livup.c: sub_402400 Callgraph

I illustrate the concept of a callgraph by means of a fragment dissassembly of

Backdoor.Win32.Livup.c function sub_402400.

The figure shows the callgraph of function sub_402400, which indicates that sub_402400 is

called twice, and in turn calls six functions.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 31

Results: α fitting of callgraph

αindeg = [1.5-3], αoutdeg = [1.1-2.5] and αbb = [1.1-2.1]
with a slightly greater spread for malware

The fitted power-law exponents αindeg, αoutdeg, αbb, together with rough callgraph size

are shown above (color means the exec has more functions, e.g. dark red has ~10,339

functions)

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 32

Results: Difference Testing

Check whether there are
statistical differences between
(α, kc), the slope and the
cutoff points of the
distributions between
goodware and malware

Only statistically relevant
difference for basic block
metrics

Malware tends to have a
lower basic block count,
implying a simpler
structure: Less interaction,
fewer branches, limited
functionality

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 33

Byte-pattern, structural AV

Theory (worse): No algorithm can perfectly
detect all possible viruses (Cohen, 1987). Even
worse, MW exists which no algorithm can detect
(Chess & White, 1990)

Practice (bad): Classic AV metamorphic
malware detection failing. Structural fingerprints
probably of no help (alas ..)

Will give you now a glimpse of novel malware, and
sketch alternative detection approaches

algorithm = steps for performing closed function-based computation

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 34

Turing Machine: Assumptions

Challenge (Knuth): Make algorithm for “toss
lightly until the mixture is crumbly”

Identifies computability with the computation
of functions. All computable problems are
function based. algorithm = steps for performing
closed function-based computation

Closed: All input specified at start of computation

Input x Function f(x) Output y

From Goldin (2005) “Breaking the Myth”:

Church-Turing Thesis: Whenever there is an effective method (algorithm) for obtaining the

values of a mathematical function, the function can be computed by a TM. TMs are

identfiied with the notion of effectiveness; computability is the current term for the same

notion.

The Church-Turing thesis has since been reinterpreted to imply that Turing Machines model

all computation, rather than just functions

This claim, which we call the Strong Church-Turing Thesis, is part of the mainstream theory

of computation. In particular, it can be found in today's popular undergraduate theory

textbooks, aka the Strong Church-Turing Thesis: A TM can do (compute) anything that a

computer can do. We find this pars pro toto said by Sipser: “A TM can do anything that a

computer can do.” (Michael Sipser, Introduction to the Theory of Computation, 1997)

Knuth’s problem is not algorithmic because it is impossible for a computer to know how

long to mix; this may depend on conditions such as humidity that cannot be predicted with

certainty ahead of time. In the function-based mathematical worldview, all inputs must be

specified at the start of the computation, preventing the kind of feedback that would be

necessary to determine when it's time to stop mixing.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 35

Novel MW: K-ary Malware

Serial k-ary: Scatter code snippets. k parts act
one after the another. In the wild (approx, trivial)
with k=2: Troj/Padodor-A. Proof-Of-Concept
with 4<=k<=8 exists, but not released

Parallel k-ary: k parts as processes execute
simultaneously (can watch each other too). In the
wild, found with k=4

Partition functionality: k distinct parts, with
each part containing merely a subset of the total
instructions. Human actionmay constitute a
‘part’ as well

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 36

Out of (Turing) Box? K-ary MW

Practical problem: How to disinfect, delete
parallel processes that watch one another,
regenerate w/ random names after deletion? K-ary
can be self-healing.

Result: Existing AV techniques unable to handle
detection within real-time, practical constraints

Formalization problem: Even multi-tape TM
cannot thoroughly describe k-ary MW, the
interaction of its parts. Cohen model too limited.

From Filiol (2007):

This framework is based on vector Boolean functions instead of Turing machines as in the

Cohen’s model. The essential reason for that choice comes from the fact that Turing

machines cannot thoroughly describe the interaction between programs, even by considering

multi-tape Turing machines Beside the fact that it would far too complex to consider them

as formalisation tools, it has been shown that the generalization of the Cohen’s model is too

limited.

Existing antivirus technologies are totally inefficient at detecting these k-ary codes as our

study and experiments have confirmed.. It would be wrong to imagine that any technical

protection against these codes is tractable due to the average complexity of their detection.

Detection has to face combinatorial problems that cannot be solved in an amount of time

that is compatible with commercial AV

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 37

Quo vadis, AV?

Conjecture

Approaches based on classic TM (Church-Turing
thesis = computation as functions) may be
insufficiently expressive to address these MW types

Metamorphic malware

Practical detection failing
(techniques, strategy)

K-ary malware

Practical very bad, may
be out of TM ‘box’?

� posit need for shift to ‘interactive computation
model’, both in practice and theory

Thought to take away: Emphasis on interaction

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 38

Interactive Computation (1997)

Anticipated by Turing (1936): Turing choice machines,
interactive choice machines as another model of
computation distinct from TMs and not reducible to it

Theoretical bridge between TM (functions) and
concurrency (communication) aspects

Open: I/O happens during computation, not just before or
after (think control systems, OS,GUI). Continuous
interaction with environment

Input Computation Output

Environment

Alan Turing (1936), "On Computable Numbers, With an Application to the

Entscheidungsproblem" Turing choice machines, interactive choice machines as another

model of computation distinct from TMs and not reducible to it.

Goldin (2004): Persistent Turing Machines as a Model of Interactive Computation.

PTMs are provably more expressive than TM.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 39

Why Does This Matter? AV
Detection

Conjecture: Detection of metamorphic and k-
ary MW via TM-based techniques likely a practical
/theoretical dead-end

Byte sequence-matching AV scanner based on
classic TM function assumption:

Input (data) ->function (decision) -> output
(yes/no MW)

Heretic Conjecture: Interactive models more
expressive than TMs. TM cannot compute all
problems, nor do everything real computers do

Sig based AV is function-based approach.

Goldin (2005): “The Church-Turing Thesis: Breaking the Myth”

Claim 1. (Mathematical worldview) All computable problems are function-based.

Claim 2. (Focus on algorithms) All computable problems can be described by an algorithm.

Claim 3. (Practical approach) Algorithms are what computers do.

Furthermore, we looked at two more claims that have been used to corroborate the Turing

Thesis myth:

Claim 4. (Nature of computers) TMs serve as a general model for computers.

Claim 5. (Universality corollary) TMs can simulate any computer.

For each of these claims, there is a grain of truth. By reformulating them to bring out the

hidden assumptions, misunderstandings are removed. The following versions of the above

statements are correct:

Corrected Claim 1. All algorithmic problems are function-based.

Corrected Claim 2. All function-based problems can be described by an algorithm.

Corrected Claim 3. Algorithms are what early computers used to do.

Corrected Claim 4. TMs serve as a general model for early computers.

Corrected Claim 5. TMs can simulate any algorithmic computing device.

Furthermore, the following claim is also correct:

Claim 6: TMs cannot compute all problems, nor can they do everything that real

computers can do.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 40

Information-Gain Adversarial
MW

Design philosophy is a systematic thwarting of
AV information gain by presenting a
metamorphic, multi-stage, encrypted, entry-point
obscuring structure

Why is detection so hard, are detection rates so
bad? Modern MW reduces relative information
gain of AV scanning techniques

Defend with “Matrix Judo”: Adapt environment
/defenses to control MW’s information gain for
benefit of defender

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 41

Information Warfare: Get into MW’s decision
cycle. Adapt responses to control MW’s next steps.

Related Idea: OODA Loop

http://www.stsc.hill.af.mil/crosstalk/2007/04/0704Ullman_Fig1.jpg

From http://www.valuebasedmanagement.net/methods_boyd_ooda_loop.html:

The OODA loop (Observe, Orient, Decide, and Act) is an information strategy concept for information

warfare developed by Colonel John Boyd (1927-1997). Although the OODA model was clearly created for

military purposes, elements of the same theory can also be applied to business strategy. Boyd developed the

theory based on his earlier experience as a fighter pilot and work on energy maneuverability. He initially used

it to explain victory in air-to-air combat, but in the last years of his career he expanded his OODA loop theory

into a grand strategy that would defeat an enemy strategically by “psychological” paralysis.

Boyd emphasized that strategy should always revolve around changing the enemy’s behavior, not annihilating

his forces. The parallel between Boyd’s ideas and Sun Tzu’s masterpiece, “The Art of War,” are obvious. Both

Boyd and Sun Tzu advocate the ideas of harmony, deception, swiftness and fluidity of action, surprise, shock,

and attacking the enemy’s strategy.

Colonel Boyd viewed the enemy (and ourselves) as a system that is acting through a decision making process

based on observations of the world around it. The enemy will observe unfolding circumstances and gather

outside information in order to orient the system to perceived threats. Boyd states that the orientation phase of

the loop is the most important step, because if the enemy perceives the wrong threats, or misunderstands what

is happening in the environment around him, then he will orient his thinking (and forces) in wrong directions

and ultimately make incorrect decisions. Boyd said that this cycle of decision-making could operate at different

speeds for the enemy and your own organization. The goal should be to to complete your OODA loop process

at a faster tempo than the enemy’s, and to take action to lengthen the enemy’s loop. One tries to conduct many

more loops “inside” the enemies OODA loop, causing the enemy to be unable to react to anything that is

happening to him.

Colonel Boyd stated that the the enemy’s OODA loop can be lengthened through a variety of means. Boyd’s

aim is to generate “non-cooperate” centers of gravity for the enemy through ambiguity, deception, novel

circumstances, fast transient maneuvers, and the use of Sun-Tzu’s idea of Cheng and Ch’i. By isolating the

enemy’s centers of gravity and developing mistrust and cohesion within the system (making them “non-

cooperative”), friction will be greatly increased, paralysis in the system will set in, and the enemy will

ultimately collapse. By attacking the thought process of the enemy / competitor, his morale and decision

process can be shattered.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 42

Passive Defenses

Network/Host level:Honeypots and honeynets
(simulated decoys that detract from 'real'
networks, hosts and services)

Prevent MW from identifying suitable target by
introducing irregularities, decoys (i.e
randomness) into environment

Program/OS level:Hot-patching binary,
Address Space Layout Randomization (random
heap, stack, library positioning)

For Network/Host level, see Honeynet project at http://www.honeynet.org/

For Program/OS level, see Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N., and

Boneh, D. 2004. On the effectiveness of address-space randomization. In Proceedings of the

11th ACM Conference on Computer and Communications Security

http://doi.acm.org/10.1145/1030083.1030124

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 43

Active Defense Framework

Observation Framework: Infer MW’s internal
hypothesis structure via dynamic ‘black-box’
interaction (not through ‘white-box’ scanning)

Seeks to model MW’s internal hypothesis
structure, enter OODA loop, then control MW’s
decision/view of the world

Control Framework: Dynamically choose
strategies which control adversarial information
gain for benefit of defense

OODA: Deception, swiftness, fluidity of action

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 44

Observation Framework: PQS

Components: 1) Incoming observation, 2)
multiple hypothesis generation, 3) hypothesis
evaluation by models, 4) model selection

PQS: A DBMS framework that allows for
process description queries against internal
models (FSM, Markov, etc)

MW: Observe/entice MW actions. Have PQS
model MW internal decision structure

Process Query System PQSs were initially designed to solve the Discrete Source Separation

Problem by setting up a DBMS framework that allows for process description queries

against internal models, a task for which traditional DBMS are unsuitable, since the queries

(e.g. SQL) are typically formulated as Boolean expressions. These models can take the form

of FSMs, rule sets, Hidden Markov models, Hidden Petri Nets, and more.

The overarching goal is to detect processes by leveraging the correlation between events

(such as observations) and the processes' states. PQS serves as the dynamic modeling

framework of the malware. The necessary observation events are passively recorded and

actively enticed through iterative interactions.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 45

Image from “Mathematics and Algorithmics of Process Detection”, G. Cybenko (Dartmouth)

Processes have hidden states which emit observables. The relationship between observables

and states is not bijective, meaning a given observation may be emitted by more than one

state. The so-called `tracks' are associations of observations to processes. Hypotheses

represent consistent tracks that explain the observables.

The hypotheses in our domain correspond to the malware's internal control structure, which

is inferred from its behaviour through observation. We propose that a PQS serve to

dynamically `black-box model' modern malware. The necessary observation events can be

both passively recorded and actively enticed through iterative interactions.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 46

Control Framework: Games

Zero-sum: Only Win-Lose possible
Non-zero-sum:Win-Win possible
Imperfect:Hidden information
Iterative: Play many times

Game Theory: Interactive framework to
weaken MW’s useful and strengthen MW’s useless
information gain

MW: Following PQS model of MW, want to
simulate MW ‘win’ while MW actually ‘loses’

Iterative imperfect non-zero-sum games The goal of the control framework is to create the
illusion of win-win (non-zero-sum) viz the malware's goals by iteratively either weakening
useful/accurate and strengthening useless/misleading information gain through defensive
strategies. Game theory provides a suitable interactive framework.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 47

History of Game Theory

Incomplete information and Bayesian games

 players with unforeseeable behaviour enter the scene

Nash equilibrium

 players 1 and 2,

 actions x,y and

 profits ππππ1(x,y), ππππ2(x,y)

 Nash equilibrium xN, yN

 reaction curves R1(y), R2(x)
Theory of Games and Economic Behavior

 1942 the Michael Curtiz film Casablanca

 1921 Emile Borel minmax games

 1928 John von Neumann minmax theorem

 1944 John von Neumann & Oscar Morgenstern

1913 Ernst Zermelo

chess as a zero sum game

 John Harsanyi

Nobel laureates
 John Nash

 Nash equilibrium

 Reinhard Selten

 incomplete information, Bayesian games, 1967

 dynamic games
 subgame-perfect equilibrium, 1965

1953 prisoner’s dilemma game

Harold W. Kuhn & Alan W. Tucker

an adjustment

equilibrium

computation

of xN and yN

to reach the

 ππππ1111(R1(y),y)=max ππππ1111(x,y)x

 ππππ2222(x, R2(x))=max ππππ2222(x,y)y

 xN =R1(y
N), yN =R2(x

N)

 1950 John Nash introduces Nash equilibrium concept

 1953 Lloyd Shapley introduces Shapley value for

cooperative games

 nobody knows
 the other players’
 true intentions,
 their types...

yet, they must
play the game

 folk wisdom the Holy Bible, Talmud

 combinatorial games Pascal, Bernoulli (16th century)

 an example of real life games

process

 xk+1 =R1(yk)

 yk+1 =R2(xk+1)



Idea: Repea-
ted, Bayesian,
imperfect
information
game with
MW
Goal:
OODA-loop
subverting
interactive
strategic ‘judo‘
by the defense

http://www.sal.hut.fi/Research/Posters/

 Robert Auman, Thomas Schelling

 Cooperative games

 infinitely repeated games, 2005

Propose interactive, OODA-loop subverting strategic `judo' against modern malware

marks a philosophical shift. From a predominantly byte sequence-matching white-

box scanners premised on classic TM function-based assumptions, we suggest

moving towards more `Interactive Computation' through the use of interactive

iterative games and black-box process modeling.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 48

111

-25-7

-52020

-1100-10

055

55-5

DoS

Pen

Scan

SFLTSHPS

Scan

If XP pen

If filter DoS …

……

Internal PQS Models

PQS

Choose / generate strategy

Malware action and

responses feedback for

model selection,

evaluation, generation

Def
Malw S…

<UO>

Key:

interact,

interrogate,

observe,

adapt -> control

system

Pulling it Together: Misleading MW

The feedback loop of this framework is sketched in a toy example in above figure. Suppose

the malware's toy internal hypothesis structure and strategies are modeled by Scan;if XP

penetrate;if filtered DoS in a PQS internal model.

The defense's strategies are S (no defense), SHNP (honeypot), SFLT (filter/block ICMP

response). The game matrix shows the payoffs of the defense's and malware's strategy

combinations. The malware starts scanning and wants to get to [Pen; S] penetrating a real

host. The defense wants to engage sequential strategies such that the malware penetrates a

fake host [Pen; SHP], thereby giving the illusion of a win for the malware while learning

more about it. Again, the defense wants to iteratively control, not necessarily minimize the

malware's DKL(p(xjHi)jjp(xjHj)). Strategies may not be fixed and dynamically generated as

PQS models adapt to the malware responses, as indicated by by S... (new defense strategy)

and < UO > (Unknown observation)

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 49

MW to Come: Satan Virus

Procedure: Give some powers (like search
people’s files and emails) and after some use, it
blackmails user into propagating it by threatening
to reveal your searches to the victim, bribes you
with more access, etc.

Use humans explicitly as ‘code’: Entrapment
though greed, malice and short-sightedness, then
uses human intelligence for propagation

Idea: Forces humans via carrot and stick principle
to do its bidding

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 50

DARPA BAA07-024: Determine whether chip
manufactured in untrusted environment can be
trusted to perform just operations specified by
specification/design and no more

Picture from BAA

MW to Come: HW-Based

From Wikipedia:

An application-specific integrated circuit (ASIC) is an integrated circuit (IC) customized

for a particular use, rather than intended for general-purpose use. For example, a chip

designed solely to run a cell phone is an ASIC.

Field-programmable gate arrays (FPGA) contain programmable logic components called

"logic blocks", and programmable interconnects that allow the same FPGA to be used in

many different applications

The general term application specific integrated circuit includes FPGAs, but most designers

use ASIC only for non field programmable devices (e.g. standard cell or sea of gates) and

make a distinction between ASIC and FPGAs.

FPGAs are usually slower than their application-specific integrated circuit (ASIC)

counterparts, as they cannot handle as complex a design, and draw more power. But their

advantages include a shorter time to market, ability to re-program in the field to fix bugs,

and lower non-recurring engineering costs. Vendors can sell cheaper, less flexible versions

of their FPGAs which cannot be modified after the design is committed. The designs are

developed on regular FPGAs and then migrated into a fixed version that more resembles an

ASIC.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 51

Malicious IC 1:
Turn off Error Reporting

Pictures from BAA

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 52

Malicious IC 2:
Trigger Write Enable

Pictures from BAA

Expert opinion:

“In a corporate environment it is next to impossible to verify the integrity of an integrated

circuit. Most systems employ (re-)programmable circuits or even microprocessors. Even if it

should be feasible to verify the underlying logic, you would have to re-do (large) parts of the

verification process in case of any update.

[..]

Especially in the case of a (purported) security fix the risk of deploying a trojanised

firmware would be weighted much lower than the (possible) impact of the (purported)

security vulnerability. [..]

And regarding the impact on computer forensics: Johanna Rutkowska demonstrated how to

reprogram the North Bridge of an AMD platform in a way that at the same physical

address the DMA controller and the CPU access different portions of memory. Mind

you, that was not an undocumented feature or a faulty IC. It's just an example of

"unexpected" or "clever" usage of documented system behavior - and an example of bad

design as well.”

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 53

Quantum Cryptography

In short, quantum cryptography solves (1-time pad)
key distribution problem

Quantum channel sensitive to
Eve .. and noise!

Picture from Janusz
Kowalik (U. Washington)

How it works:

User 1 sends photons: | | / - - \ - | - /

User 2 sets filter: X + + X X X + X + +

User 2 receives photons / | - \ / \ - / - |

User 2 tells User 1 (publicly) settings

User 1 tells User 2 (publicly) which settings correct: 2, 6, 7, 9

Both users keep those states correctly measured:

* | * * * \ - * - *

Using { \, | } = 0 and { - , / } = 1 yields:

0 0 1 1 : Shared Key for one time pad

Why it can detect eavesdroppers (from
http://www.csa.com/discoveryguides/crypt/overview.php):

If an eavesdropper Eve tries to gain information about the key by intercepting the photons as

they are transmitted from Alice to Bob, measuring their polarization, and then resending

them so Bob does receive a message, then since Eve, like Bob, has no idea which basis

Alice uses to transmit each photon, she too must choose bases at random for her

measurements. If she chooses the correct basis, and then sends Bob a photon matching the

one she measures, all is well. However, if she chooses the wrong basis, she will then see a

photon in one of the two directions she is measuring, and send it to Bob. If Bob's basis

matches Alice's (and thus is different from Eve's), he is equally likely to measure either

direction for the photon. However, if Eve had not interfered, he would have been guaranteed

the same measurement as Alice. In fact, in this intercept/resend scenario, Eve will corrupt

25 percent of the bits. So if Alice and Bob publicly compare some of the bits in their key

that should have been correctly measured and find no discrepancies, they can conclude that

Eve has learned nothing about the remaining bits, which can be used as the secret key.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 54

Quantum Malware?

Would need really new approaches in terms of
Quantum AV (metrology, error correction) to
clean, restore data. Open interesting problem!

Not speculative: Quantum Cryptography used
today: Swiss national elections, Oct 21st 2007
(http://tinyurl.com/3ctx4y)

To come? QMW designed to decohere qbit’s
phase and thus randomize data through phase
gates, distort operations of quantum networks by
malicious interference

See New Scientist Article: http://tinyurl.com/22fbcn

A quantum computer is any device for computation that makes direct use of distinctively quantum

mechanical phenomena, such as superposition and entanglement, to perform operations on data. In a classical

(or conventional) computer, information is stored as bits; in a quantum computer, it is stored as qubits

(quantum bits). The basic principle of quantum computation is that the quantum properties can be used to

represent and structure data, and that quantum mechanisms can be devised and built to perform operations with

this data.

Researchers say the emergence of quantum malware is an inevitability, but only recently has serious debate

about protecting computers from such programs started, compared to the decades of research and billions of

dollars already committed to quantum computer development. Quantum computers have yet to be fully

realized, but a "quantum Internet" comprised of optical fiber and free space point-to-point networks dedicated

to channeling quantum information already exists. This prompted University of Toronto researchers Lian-Ao

Wu and Daniel Lidar to author a 2005 paper detailing a defense against quantum malware. Lidar says a

quantum communication network will invite interference like any other network, while hackers could

"decohere" a quantum bit's phase information and cause the output to randomize. Wu and Lidar recommend

that quantum systems be kept offline as long as possible, and they propose a back-up system in which all

networked quantum computers have an ancillary register of qubits equal in size to the quantum computer's

memory, which is isolated whenever the computer is linked to the network to prevent direct infection. All

members of a network share a secret sequence of run-time intervals that are very brief, and that must be

considerably shorter than the periods when the calculations are stored in the ancillary qubit register. The setup

of quantum computer networks in which more than a few kilometers separates the computers necessitates the

inclusion of "quantum repeater" boxes, which could be hijacked. Lidar suggests an alternative device he and

Wu conceived that uses the most simple optical components installed at regular intervals along the optical

fiber.

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 55

Synopsis/Thoughts/Speculation

For practical deployment, leverage ‘black-box’
modeling techniques and interaction frameworks.
For HW-based, who knows??

Philosophically, modern malware investigation
may resemble naturalist approaches of
Alexander Humboldt/E.O. Wilson .. Could MW
‘art’ be imitating life along lines that make MW
investigation a new subfield of natural sciences?

Need push in theory development in context of
interactive models to formalize modern software
malware (maybe hardware too?)

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 56

Advice to students (especially)

Dare to be bold, stake out a position, then argue
scientifically, empirically and logically

Imagination as the first step is much more
important than knowledge

Be wrong at times, you cannot grow if you do
not take that chance

Thank you for your time and the invitation to
speak at the Horst Görtz Institut 2007 at the Ruhr
Universität Bochum

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 57

References

Filiol, Eric. “Formalisation and implementation
aspects of K -ary (malicious) codes”, J Comp Vir
3:2 (2007)

Aycock, J. , deGraaf, R; Jacobson M.

“Anti-disassembly using cryptographic hash
functions”, J Comp Vir 2:1 (2006)

Eds: Dina Goldin, Scott A. Smolka, Peter
Wegner.“Interactive Computation: The New
Paradigm” (Springer, 2006)

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 58

References (cont)

Bond, M. and Danezis, G. A pact with the devil. In:
Proc of the 2006 Workshop on New Security
Paradigms (2007)

Binmore, K. “Playing for Real: A Text on Game
Theory” (Oxford U Press, 2007)

Bilar, D. Opcodes as Predictor for Malware. To
appear: International Journal of Electronic
Security and Digital Forensics (2008)

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 59

References (cont)

Bilar, D. “Misleading modern malware”.
Submitted: Journal in Computer Virology (2007)

Cybenko, G.; Berk, V.: An overview of process
query systems. In: Proc SPIE Tech Homeland Sec
and Def, Vol. 5403 (2004)

Wu, Lian-Ao and Lidar Daniel. “Quantum
Malware”. Quantum Information Processing 5:69
(2006)

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 60

References (cont)

Chess, D. and White, S.: “An Undetectable

Computer Virus” http://tinyurl.com/74vgv

(2000)

Bilar, D.: “Callgraph structure of executables”. To
appear: AI Comm. Special Issue on “Network
Analysis in Natural Sciences and Engineering"
(2007)

DARPA BAA07-24: “TRUST in Integrated
Circuits”. http://tinyurl.com/3y7nno (2007)

Daniel Bilar, Wellesley College October 2007

Talk HGI at Ruhr-Uni Bochum 61

References (cont)

Goldin, D and Wegner, P.: “The Church-Turing
Thesis: Breaking the Myth”. In: Springer Lecture
Notes in Computer Science, Vol. 3526 (2005)

Wegner, P.: “Why Interaction is more Powerful
than Algorithms. Communications of the ACM
(May 1997)

Newman, M.: “The Structure and Function of
Complex Networks” (2003).
http://arxiv.org/abs/cond-mat/0303516

